Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Journal of Molecular Structure ; : 135933, 2023.
Article in English | ScienceDirect | ID: covidwho-20231110

ABSTRACT

A new N'-(3,4-dimethoxybenzylidene)-4-methylbenzenesulfonohydrazide derivatives were prepared from a condensation reaction between 4-methylbenzenesulfonohydrazide and 3,4-dimethoxybenzaldehyde. The structure of DMSH was elucidated using various spectral techniques including FT-IR, 1H-NMR and 13C-NMR. The structure of DMSH bond parameters also confirmed by single crystal XRD analysis of related derivatives and optimized bond parameters are calculated by density functional theory (DFT) method at B3LYP/6-311G (d, p) level of theory. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single crystal XRD data. The experimentally observed FT-IR bands were assigned to different normal modes of the molecule. The results show a good agreement with each other when these computed bond parameters are compared to XRD values of related compounds. The stability, chemical reactivity and charge transfer within the molecule was explained by frontier molecular orbital calculations. Atomic charges on the various atoms of DMSH obtained by Mulliken population analysis. Potential reactive sites of the DMSH compound have been identified by MEP which is mapped to the electron density surfaces. The reported molecule is used as a potential NLO material since it has a high μβ0 value. The theoretical UV-vis spectrum of the compound is used to study the visible absorption maxima (λ max). The molecular docking mechanism between DMSH ligand and COVID-19/6WCF and COVID-19/6Y84 receptors were studied to investigate the binding modes of this compound at the active sites. Molecular docking outcomes have shown that the DMSH molecule can be considered as a potential agent against COVID-19/6WCF-6Y84 receptors. In addition, the theoretical parameters of the bioactive molecules were calculated to establish their drug-likeness qualities and ADME/T analysis was carried out to examine the drug properties of the synthesized compound. Molecular dynamics simulation was performed for COVID-19 main protease (Mpro: 6WCF/6Y84) to understand the elements governing the inhibitory effect and the stability of interaction under dynamic conditions. The resultant complex structures were subjected to 100 ns simulation run to estimate their binding stabilities using GROMACS. The molecular dynamics simulation studies provided essential evidence that the systems were stable during the progression of 100 ns simulation run.

2.
J Genet Eng Biotechnol ; 19(1): 121, 2021 Aug 18.
Article in English | MEDLINE | ID: covidwho-2315664

ABSTRACT

BACKGROUND: Canine circovirus is a deadly pathogen of dogs and causes vasculitis and hemorrhagic enteritis. It causes lethal gastroenteritis in pigs, fox, and dogs. Canine circovirus genome contains two main (and opposite) transcription units which encode two open reading frames (ORFs), a replicase-associated protein (Rep) and the capsid (Cap) protein. The replicase protein and capsid protein consist of 303 amino acids and 270 amino acids respectively. Several immuno-informatics methods such as epitope screening, molecular docking, and molecular-dynamics simulations were used to craft peptide-based vaccine construct against canine circovirus. RESULTS: The vaccine construct was designed by joining the selected epitopes with adjuvants by suitable linker. The cloning and expression of the vaccine construct was also performed using in silico methods. Screening of epitopes was conducted by NetMHC server that uses ANN (Artificial neural networking) algorithm. These methods are fast and cost-effective for screening epitopes that can interact with dog leukocyte antigens (DLA) and initiate an immune response. Overall, 5 epitopes, YQHLPPFRF, YIRAKWINW, ALYRRLTLI, HLQGFVNLK, and GTMNFVARR, were selected and used to design a vaccine construct. The molecular docking and molecular dynamics simulation studies show that these epitopes can bind with DLA molecules with stability. The codon adaptation and in silico cloning studies show that the vaccine can be expressed by Escherichia coli K12 strain. CONCLUSION: The results suggest that the vaccine construct can be useful in preventing the dogs from canine circovirus infections. However, the results need further validation by performing other in vitro and in vivo experiments.

3.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2292459

ABSTRACT

The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.


Subject(s)
Coronavirus Infections , Coronavirus , Orthomyxoviridae , Humans , Viral Fusion Proteins/metabolism , Coronavirus/metabolism , Hemagglutinins/metabolism , Spike Glycoprotein, Coronavirus/genetics , Membrane Fusion , Orthomyxoviridae/metabolism , Virus Internalization
4.
J Biomol Struct Dyn ; : 1-22, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-2250281

ABSTRACT

Stem and bark of the tree Terminalia arjuna Wight & Arn. (Combretaceae) has been documented to exhibit therapeutic properties like cardiotonic, anticancer, antiviral, antibacterial, antifungal, hypercholesterolemia, hypolipidemic, and anti-coagulant. Our previous studies have shown that, ethanolic extract of T. arjuna bark exhibits radical scavenging anti-oxidant activity and also effectively inhibited catalase activity. In this study, oleanane triterpenoids type compounds viz., oleanolic acid, arjunolic acid, arjunolitin, arjunetin were isolated from ethanolic bark extract as bio-active compound and their structures were elucidated using 1H, 13C NMR, HR-ESIMS, IR. Of the various compounds, Arjunetin showed significant inhibition of catalase activity as compared to the other compounds. Based on the structural similarity between arjunetin and current antiviral drugs, we propose that arjunetin might exhibit antiviral activity. Molecular docking and molecular dynamics studies showed that arjunetin binds to the binds to key targets of SARS-CoV-2 namely, 3CLpro, PLpro, and RdRp) with a higher binding energy values (3CLpro, -8.4 kcal/mol; PLpro, -7.6 kcal/mol and RdRp, -8.1 kcal/mol) as compared with FDA approved protease inhibitor drugs to Lopinavir (3CLpro, -7.2 kcal/mole and PLpro -7.7 kcal/mole) and Remdesivir (RdRp -7.6 kcal/mole). To further investigate this, we performed 200-500 ns molecular dynamics simulation studies. The results transpired that the binding affinity of Arjunetin is higher than Remdesivir in the RNA binding cavity of RdRp. Based on structural similarity between arjunetin and Saikosaponin (a known antiviral agents) and based on our molecular docking and molecular dynamic simulation studies, we propose that arjunetin can be a promising drug candidate against Covid-19.Communicated by Ramaswamy H. Sarma.

5.
Mol Divers ; 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2274113

ABSTRACT

To date, the COVID-19 pandemic has still been infectious around the world, continuously causing social and economic damage on a global scale. One of the most important therapeutic targets for the treatment of COVID-19 is the main protease (Mpro) of SARS-CoV-2. In this study, we combined machine-learning (ML) model with atomistic simulations to computationally search for highly promising SARS-CoV-2 Mpro inhibitors from the representative natural compounds of the National Cancer Institute (NCI) Database. First, the trained ML model was used to scan the library quickly and reliably for possible Mpro inhibitors. The ML output was then confirmed using atomistic simulations integrating molecular docking and molecular dynamic simulations with the linear interaction energy scheme. The results turned out to show that there was evidently good agreement between ML and atomistic simulations. Ten substances were proposed to be able to inhibit SARS-CoV-2 Mpro. Seven of them have high-nanomolar affinity and are very potential inhibitors. The strategy has been proven to be reliable and appropriate for fast prediction of SARS-CoV-2 Mpro inhibitors, benefiting for new emerging SARS-CoV-2 variants in the future accordingly.

6.
Biochem Biophys Rep ; 34: 101459, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2272262

ABSTRACT

Background: SARS-CoV-2 is a deadly viral disease and uncounted deaths occurs since its first appearance in the year 2019. The antiviral drugs, benzylisoquinoline alkaloids, and coumarin molecules were searched using different online engines for drug repurposing with SARS-CoV-2 and to investigate the effects on main viral protease (Mpro) upon their bindings. Methods: A database composed of antiviral drugs, benzylisoquinoline alkaloids, and Coumarin molecules was screened through a molecular docking strategy to uncover the interactions of collected molecules with SARS-CoV-2 Mpro. Further, molecular dynamics simulations (MDS) were implemented for 100 ns to calculate the stability of the best complexed molecular scaffold with Mpro. The conformations of the simulated complexes were investigated by using principal component analysis (PCA) and Gibbs energy landscape (FEL) and DSSP together. Next, free binding energy (ΔGbind) was calculated using the mmpbsa method. Results: Molecular docking simulations demonstrate 17 molecules exhibited better binding affinity out of 99 molecules present in the database with the viral protease Mpro, followed ADMET properties and were documented. The Coumarin-EM04 molecular scaffold exhibited interactions with catalytical dyad HIS41, CYS145, and neighboring amino acids SER165 and GLN189 in the catalytical site. The crucial factor RMSD was calculated to determine the orientations of Coumarin-EM04. The Coumarin-EM04 complexed with Mpro was found stable in the binding site during MDS. Furthermore, the free energy binding ΔGbind of Coumarin-EM04 was found to be -187.471 ± 2.230 kJ/mol, and for Remdesivir ΔGbind was -171.926 ± 2.237 kJ/mol with SARS-CoV-2 Mpro. Conclusion: In this study, we identify potent molecules that exhibit interactions with catalytical dyad HIS41 and CYS145 amino acids and unravel Coumarin-EM04 exhibited ΔGbind higher than Remdesivir against Mpro and thus may serve better antiviral agent against SARS-CoV-2.

7.
Molecules ; 28(1)2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2240973

ABSTRACT

In recent years, humanity has had to face a critical pandemic due to SARS-CoV-2. In the rapid search for effective drugs against this RNA-positive virus, the repurposing of already existing nucleotide/nucleoside analogs able to stop RNA replication by inhibiting the RNA-dependent RNA polymerase enzyme has been evaluated. In this process, a valid contribution has been the use of in silico experiments, which allow for a rapid evaluation of the possible effectiveness of the proposed drugs. Here we propose a molecular dynamic study to provide insight into the inhibition mechanism of Penciclovir, a nucleotide analog on the RNA-dependent RNA polymerase enzyme. Besides the presented results, in this article, for the first time, molecular dynamic simulations have been performed considering not only the RNA-dependent RNA polymerase protein, but also its cofactors (fundamental for RNA replication) and double-strand RNA.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , RNA-Dependent RNA Polymerase , Nucleotides , RNA , RNA, Viral , Molecular Docking Simulation
8.
Trends in Sciences ; 20(1), 2023.
Article in English | Scopus | ID: covidwho-2206908

ABSTRACT

The current pandemic Covid-19 brought about by a newly emerged and highly infectious virus named as Sars-CoV-2 as a worldwide danger, has infected more than 600 million people and number of deaths are continuously rising day by day. Till date there are no medications accessible for treatment. All over the world scientists and researchers are involved in the study of this emerged virus and its lifecycle. Structures of proteins in the life cycle of virus has been revealed in RCSB PDB (Research Collaboratory for Structural Bioinformatics Protein Data Bank) by researchers. Citrus fruits are used to treat many distresses of humans. Literature survey shows that it has various activities. Our research work is meant to identify the phytoconstituents which are having phenolic composition and good antiviral and antioxidant properties from citrus fruits against Covid-19 proteins (spike binding domain with ACE2 receptor and spike binding domain with Main protease) and to know its in-silico molecular basis. In this study, about 25 compounds from citrus fruits which is having a good antiviral and antioxidant properties and also phenolic composition were employed for molecular docking analysis, molecular dynamic simulation studies and ADME studies. Based on present study 2 compounds from Citrus fruits acted well against the Covid-19 proteins. The MD simulations were employed to identify Hesperidin and Procyanidin B2 as hit compounds. Further ADME analysis were studied for top 2 compounds, these compounds can be further taken for in-vitro studies to know the effective activity against Covid-19. © 2023, Walailak University. All rights reserved.

9.
J Mol Model ; 28(12): 380, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2103921

ABSTRACT

In response to the COVID-19 pandemic, and the lack of effective and safe antivirals against it, we adopted a new approach in which food supplements with vital antiviral characteristics, low toxicity, and fast excretion have been targeted. The structures and chemical properties of the food supplements were compared to the promising antivirals against SARS-COV-2. Our goal was to exploit the food supplements to mimic the topical antivirals' functions but circumventing their severe side effects, which has limited the necessary dosage needed to exhibit the desired antiviral activity. On this line, after a comparative structural analysis of the chemicals mentioned above, and investigation of their potential mechanisms of action, we selected caffeine and some compounds of the vitamin B family and further applied molecular modeling techniques to evaluate their interactions with the RDB domain of the Spike protein of SARS-CoV-2 (SC2Spike) and its corresponding binding site on human ACE-2 (HssACE2). Our results pointed to vitamins B1 and B6 in the neutral form as potential binders to the HssACE2 RDB binding pocket that might be able to impair the SARS-CoV-2 mechanism of cell invasion, qualifying as potential leads for experimental investigation against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Humans , SARS-CoV-2 , Pyridoxamine , Thiamine/metabolism , Pandemics , Caffeine/pharmacology , Niacinamide , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Drug Design , Vitamins
10.
Molecules ; 27(18)2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2033067

ABSTRACT

The SARS-CoV-2 targets were evaluated for a set of FDA-approved drugs using a combination of drug repositioning and rigorous computational modeling methodologies such as molecular docking and molecular dynamics (MD) simulations followed by binding free energy calculations. Six FDA-approved drugs including, Ouabain, Digitoxin, Digoxin, Proscillaridin, Salinomycin and Niclosamide with promising anti-SARS-CoV-2 activity were screened in silico against four SARS-CoV-2 proteins-papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), SARS-CoV-2 main protease (Mpro), and adaptor-associated kinase 1 (AAK1)-in an attempt to define their promising targets. The applied computational techniques suggest that all the tested drugs exhibited excellent binding patterns with higher scores and stable complexes compared to the native protein cocrystallized inhibitors. Ouabain was suggested to act as a dual inhibitor for both PLpro and Mpro enzymes, while Digitoxin bonded perfectly to RdRp. In addition, Salinomycin targeted PLpro. Particularly, Niclosamide was found to target AAK1 with greater affinity compared to the reference drug. Our study provides comprehensive molecular-level insights for identifying or designing novel anti-COVID-19 drugs.


Subject(s)
COVID-19 , Proscillaridin , Antiviral Agents/chemistry , Cysteine Endopeptidases/chemistry , Digitoxin , Digoxin , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Niclosamide , Ouabain , Papain/metabolism , RNA-Dependent RNA Polymerase , SARS-CoV-2
11.
J Mol Struct ; 1272: 134160, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2031576

ABSTRACT

The CD147 / Cyp A interaction is a critical pathway in cancer types and an essential factor in entering the COVID-19 virus into the host cell. Melittin acts as an inhibitory peptide in cancer types by blocking the CD147/ Cyp A interaction. The clinical application of Melittin is limited due to weak penetration into cancer cells. TAT is an arginine-rich peptide with high penetration ability into cells widely used in drug delivery systems. This study aimed to design a hybrid peptide derived from Melittin and TAT to inhibit CD147 /Cyp A interaction. An amino acid region with high anti-cancer activity in Melittin was selected based on the physicochemical properties. Based on the results, a truncated Melittin peptide with 15 amino acids by the GGGS linker was fused to a TAT peptide (nine amino acids) to increase the penetration rate into the cell. A new hybrid peptide analog(TM) was selected by replacing the glycine with serine based on random point mutation. Docking results indicated that the TM peptide acts as an inhibitory peptide with high binding energy when interacting with CD147 and the CypA proteins. RMSD and RMSF results confirmed the high stability of the TM peptide in interaction with CD147. Also, the coarse-grained simulation showed the penetration potential of TM peptide into the DOPS-DOPC model membrane. Our findings indicated that the designed multifunctional peptide could be an attractive therapeutic candidate to halter tumor types and COVID-19 infection.

12.
J Mol Model ; 28(6): 144, 2022 May 11.
Article in English | MEDLINE | ID: covidwho-1838345

ABSTRACT

COVID-19 has recently grown to be pandemic all around the world. Therefore, efforts to find effective drugs for the treatment of COVID-19 are needed to improve humans' life quality and survival. Since the main protease (Mpro) of SARS-CoV-2 plays a crucial role in viral replication and transcription, the inhibition of this enzyme could be a promising and challenging therapeutic target to fight COVID-19. The present study aims to identify alkaloid compounds as new potential inhibitors for SARS-CoV-2 Mpro by the hybrid modeling analyses. The docking-based virtual screening method assessed a collection of alkaloids extracted from over 500 medicinal plants and sponges. In order to validate the docking process, classical molecular dynamic simulations were applied on selected ligands, and the calculation of binding free energy was performed. Based on the proper interactions with the active site of the SARS-CoV-2 Mpro, low binding energy, few side effects, and the availability in the medicinal market, two indole alkaloids were found to be potential lead compounds that may serve as therapeutic options to treat COVID-19. This study paves the way for developing natural alkaloids as stronger potent antiviral agents against the SARS-CoV-2.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Alkaloids/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Indole Alkaloids , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2
13.
Molecules ; 27(5)2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1715570

ABSTRACT

A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and ß-sitosterol (4).


Subject(s)
Artemisia/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Flavonoids/chemistry , SARS-CoV-2/enzymology , Animals , Artemisia/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Coronavirus 3C Proteases/metabolism , Density Functional Theory , Flavonoids/isolation & purification , Flavonoids/metabolism , Flavonoids/pharmacology , Humans , Lethal Dose 50 , Male , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Rats , SARS-CoV-2/isolation & purification , Skin/drug effects , Skin/pathology
14.
Life (Basel) ; 12(2)2022 Feb 20.
Article in English | MEDLINE | ID: covidwho-1700961

ABSTRACT

A novel coronavirus (COVID-19) was identified as one of the severe acute respiratory syndrome coronaviruses (SARS-CoV-2) and emerged as a pandemic in 2020. Thus, there is an urgent need to screen and develop an agent to suppress the proliferation of viral particles of SARS-CoV-2, and several drugs have entered clinical trial phases to assess their therapeutic potential. The objective of the present study is to screen phytochemicals against the main viral protease using molecular docking studies. The phytochemicals vasicine, vasicinone, vasicinolone, vasicol, vasicolinone, adhatodine, adhavasicinone, aniflorine, anisotine, vasnetine, and orientin from Adhatoda vasica were selected, and the compounds were docked with various viral protein targets, including specific SARS-CoV-2 main protease (PDBID:6Y84), using AutoDock, Schrodinger, Biovia discovery studio, and virtual screening tools. Adhatodine and vasnetine showed a better binding affinity of -9.60 KJ/mol and -8.78 KJ/mol, respectively. In molecular docking simulations for 10 ns, these compounds illustrated strong hydrogen-bonding interactions with the protein active site and induced a potential conformational change in the ligand-binding site. The results were compared with the antiviral drugs nirmatrelvir and ritonavir. These results suggest that these phytochemicals can be studied as potential inhibitors against SARS-CoV-2 protease and may have an antiviral effect on coronavirus. However, further in vitro and in vivo efficacy activity needs to be investigated for these phytochemicals.

15.
Comput Struct Biotechnol J ; 20: 573-582, 2022.
Article in English | MEDLINE | ID: covidwho-1616446

ABSTRACT

The M protein of the novel coronavirus 2019 (SARS-CoV-2) is the major structural component of the viral envelope and is also the minimum requirement for virus particle budding. M proteins generally exist as dimers. In virus assembly, they are the main driving force for envelope formation through lateral interactions and interactions with other viral structural proteins that play a central role. We built 100 candidate models and finally analyzed the six most convincing structural features of the SARS-CoV-2 M protein dimer based on long-timescale molecular dynamics (MD) simulations, multiple free energy analyses (potential mean force (PMF) and molecular mechanics Poisson-Boltzmann surface area (MMPBSA)) and principal component analysis (PCA) to obtain the most reasonable structure. The dimer stability was found to depend on the Leu-Ile zipper motif and aromatic amino acids in the transmembrane domain (TMD). Furthermore, the C-terminal domain (CTD) effects were relatively small. These results highlight a model in which there is sufficient binding affinity between the TMDs of M proteins to form dimers through the residues at the interface of the three transmembrane helices (TMHs). This study aims to help find more effective inhibitors of SARS-CoV-2 M dimers and to develop vaccines based on structural information.

16.
Saudi J Biol Sci ; 29(1): 18-29, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487971

ABSTRACT

BACKGROUND: The ongoing global outbreak of new corona virus (SARS-CoV-2) has been recognized as global public health concern since it causes high morbidity and mortality every day. Due to the rapid spreading and re-emerging, we need to find a potent drug against SARS-CoV-2. Synthetic drugs, such as hydroxychloroquine, remdisivir have paid more attention and the effects of these drugs are still under investigation, due to their severe side effects. Therefore, the aim of the present study was performed to identify the potential inhibitor against main protease SARS-CoV-2 6LU7. OBJECTIVE: In this study, RO5, ADME properties, molecular dynamic simulations and free binding energy prediction were mainly investigated. RESULTS: The molecular docking study findings revealed that andrographolide had higher binding affinity among the selected natural diterpenoids compared to co-crystal native ligand inhibitor N3. The persistent inhibition of Ki for diterpenoids was analogous. Furthermore, the simulations of molecular dynamics and free binding energy findings have shown that andrographolide possesses a large amount of dynamic properties such as stability, flexibility and binding energy. CONCLUSION: In conclusion, findings of the current study suggest that selected diterpenoids were predicted to be the significant phytonutrient-based inhibitor against SARS-CoV-2 6LU7 (Mpro). However, preclinical and clinical trials are needed for the further scientific validation before use.

17.
Biomolecules ; 11(9)2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1408460

ABSTRACT

SARS-CoV-2 virus mutations might increase its virulence, and thus the severity and duration of the ongoing pandemic. Global drug discovery campaigns have successfully developed several vaccines to reduce the number of infections by the virus. However, finding a small molecule pharmaceutical that is effective in inhibiting SARS-CoV-2 remains a challenge. Natural products are the origin of many currently used pharmaceuticals and, for this reason, a library of in-house fungal extracts were screened to assess their potential to inhibit the main viral protease Mpro in vitro. The extract of Penicillium citrinum, TDPEF34, showed potential inhibition and was further analysed to identify potential Mpro inhibitors. Following bio-guided isolation, a series of benzodiazepine alkaloids cyclopenins with good-to-moderate activity against SARS-CoV-2 Mpro were identified. The mode of enzyme inhibition of these compounds was predicted by docking and molecular dynamic simulation. Compounds 1 (isolated as two conformers of S- and R-isomers), 2, and 4 were found to have promising in vitro inhibitory activity towards Mpro, with an IC50 values range of 0.36-0.89 µM comparable to the positive control GC376. The in silico investigation revealed compounds to achieve stable binding with the enzyme active site through multiple H-bonding and hydrophobic interactions. Additionally, the isolated compounds showed very good drug-likeness and ADMET properties. Our findings could be utilized in further in vitro and in vivo investigations to produce anti-SARS-CoV-2 drug candidates. These findings also provide critical structural information that could be used in the future for designing potent Mpro inhibitors.


Subject(s)
Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Penicillium/chemistry , SARS-CoV-2/enzymology , Benzodiazepinones/chemistry , Benzodiazepinones/isolation & purification , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/isolation & purification
18.
Nat Prod Res ; 36(16): 4254-4260, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1402225

ABSTRACT

This research investigates antiviral potential of extracted honeybee products against COVID-19 main protease (Mpro) by computational methods. The crystal structure of COVID-19 Mpro was obtained from the protein data bank. Six synthetic drugs with antiviral properties were used as control samples in order to compare the results with those of natural ligands. The six honeybee components, namely 3,4,5-Tricaffeoylquinic acid, Kaempferol-3-O-glucoside, (E)-2'-Geranyl-3',4',7-Trihydroxyflavanone, 6-Cinnamylchrysin, (+)-Pinoresinol, and (24E)-3-Oxo-27,28-dihydroxycycloart-24-en-26-oic acid, have represented the lowest binding energies of -9.0, -8.5, -8.2, -7.8, -7.7, -7.3 and -6.7 Kcal/mol, respectively. These natural inhibitors were then picked for further investigations on their pharmacokinetic features. Also a 150 ns of Molecular dynamics simulations were carried out in order to evaluate their effects on protein structure and dynamics. The 3, 4, 5-Tricaffeoylquinic acid is hopefully proposed for COVID-19 Mpro inhibition if further in vitro, in vivo, and clinical trial studies will approve its effectiveness against COVID-19.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bees , Biological Products/pharmacology , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
19.
Mar Drugs ; 19(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325729

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2's spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein's RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Aquatic Organisms/chemistry , Polysaccharides/pharmacology , SARS-CoV-2/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites , Computer Simulation , Heparin/chemistry , Heparin/metabolism , Humans , Molecular Docking Simulation , Polysaccharides/chemistry , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Sulfates/chemistry
20.
Biomolecules ; 11(7)2021 06 22.
Article in English | MEDLINE | ID: covidwho-1282440

ABSTRACT

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) protein is the target for the antiviral drug Remdesivir (RDV). With RDV clinical trials on COVID-19 patients showing a reduced hospitalisation time. During the spread of the virus, the RdRp has developed several mutations, with the most frequent being A97V and P323L. The current study sought to investigate whether A97V and P323L mutations influence the binding of RDV to the RdRp of SARS-CoV-2 compared to wild-type (WT). The interaction of RDV with WT-, A97V-, and P323L-RdRp were measured using molecular dynamic (MD) simulations, and the free binding energies were extracted. Results showed that RDV that bound to WT- and A97V-RdRp had a similar dynamic motion and internal residue fluctuations, whereas RDV interaction with P323L-RdRp exhibited a tighter molecular conformation, with a high internal motion near the active site. This was further corroborated with RDV showing a higher binding affinity to P323L-RdRp (-24.1 kcal/mol) in comparison to WT-RdRp (-17.3 kcal/mol). This study provides insight into the potential significance of administering RDV to patients carrying the SARS-CoV-2 P323L-RdRp mutation, which may have a more favourable chance of alleviating the SARS-CoV-2 illness in comparison to WT-RdRp carriers, thereby suggesting further scientific consensus for the usage of Remdesivir as clinical candidate against COVID-19.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/genetics , Point Mutation , SARS-CoV-2/genetics , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Binding Sites/drug effects , COVID-19/virology , Catalytic Domain/drug effects , Humans , Molecular Dynamics Simulation , Point Mutation/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL